

ERDC MSRC PET Preprint No. 01-29

An MPI Quasi Time-Accurate Approach for
Nearshore Wave Prediction Using the SWAN Code

by

Stephen F. Wornom

13 August 2001

Work funded by the Department of Defense
High Performance Computing Modernization Program
U.S. Army Engineer Research and Development Center
Major Shared Resource Center through

Programming Environment and Training

Supported by Contract Number: DAHC94-96-C0002
Computer Sciences Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense position, policy, or decision
unless so designated by other official documentation.

 1

PET Preprint

An MPI Quasi Time-Accurate Approach
for Nearshore Wave Prediction Using the SWAN Code

Stephen F. Wornom
U.S. Army Engineer Research and Development Center

Major Shared Resource Center
Vicksburg, MS

Abstract

The program SWAN (Simulating WAves Nearshore) is a third-generation wave model
used to compute the spectra of random short-crested, wind-generated waves on Eulerian
grids. No parallel version of the SWAN code for parallel high-performance computing
(HPC) platforms currently exists. Work on a parallel version is in its early stages and is
unlikely to be available in the near future. This study introduces a quasi time-accurate
method in which the individual integrations can be regarded as disjointed so that coarse-
grain parallelism may be exploited. The Message Passing Interface (MPI) system is used
to pass the data to the parallel processes. For a test case with 72 hours of data, a speedup
of 59 using 72 processes was observed. The quasi time-accurate wall time was reduced
from 3.34 hours to 3.31 minutes. The wall time for the time-accurate 72-hour
computation was 4.58 hours. The differences between the time-accurate results and the
quasi time-accurate results were very small for the test case examined. In fact, error
norms showed the quasi time-accurate version to be more accurate than the time-accurate
version at three of the five test sites. Thus the MPI quasi time-accurate approach may
play an important interim role until an efficient time-accurate version of SWAN becomes
available. The efficiency of the MPI quasi time-accurate approach opens the possibility
of using refined grids and more frequencies and/or directional angles than is possible
with the nonparallel time-accurate version.

Introduction
One of the major challenges in ocean modeling is the accurate prediction of nearshore
wave conditions required for environmental impact studies of erosion and sediment
transport and also equally important in naval operations. The SWAN code has been
developed specifically for nearshore zones where finite-depth effects become important.
SWAN has been designed for nonstationary computations but can also be used for
stationary computations. For nonstationary computations, an implicit time-accurate
algorithm is employed to propogate waves on either a spherical or Cartesian grid. Booij
et al. (1999) and Ris et al. (1999) give the details of the SWAN code. The SWAN USER
MANUAL – see Holthuijsen et al. (1999) – can be downloaded from the SWAN Web
site (http://www.swan.ct.tudelft.nl). SWAN is an open source code.

At present, there is no parallel version of the SWAN code for high-performance
computing (HPC) platforms. Work on a parallel version is in its early stages, and an
efficient time-accurate version is unlikely to be available in the next 1-2 years. At
present, the SWAN code is run on a single processor that can result in very long CPU

 2

times for some simulations and thus is prohibitive for Department of Defense (DoD)
applications for which rapid results are desired.

Parallelism can occur at either the coarse-grain level or the fine-grain level. Fine-grain
parallelism occurs at the finest level possible in a code, for example, the most inner do
loop level or parallelization of a function. Coarse-grain parallelism is the largest part of a
code that can be run on different processes. Examples include domain-decomposition
methods, multiblock codes, codes using data partitioning, and single programs with
multiple data where domains, blocks, partitions, and data sets are executed on different
processes. For maximum efficiency, both coarse-grain and fine-grain parallelism should
be exploited by combining the Message Passing Interface (MPI) system with OpenMP,
MPI with Pthreads, or some other combination.

In order to arrive at a parallel version of the SWAN code, this study introduces a quasi
time-accurate approach that allows coarse-grain parallelism to be exploited. In this
approach, the time dependency enters the computation through time-varying boundary
spectra, wind fields, and current fields; the wave action transport equation is solved as a
stationary problem at each time output point. This approach has the advantage that the
solution procedure changes from a sequential one to a single program with multiple data,
where coarse-grain parallelism can be implemented using the MPI message-passing
system.

While the quasi time-accurate approach is new to the SWAN code where the time-
accurate solver is used, it is the basis for the STWAVE code, which does not have a time-
accurate solver. The developers of the STWAVE code, Smith et al. (2001), solve a
steady-state spectral wave equation in the STWAVE code. Smith et al. (2001) explained
the basis for solving the stationary wave equation at a specific time output. This approach
is applied here to the entire range of time-varying boundary spectra and wind fields.
Smith et al. (2001) state that solving a steady-state equation “is appropriate for wave
conditions that vary more slowly than the time it takes for waves to transit the
computational grid. For wave generation, the steady-state assumption means that the
winds have remained sufficiently long for the waves to attain fetch-limited or fully
developed conditions.” As a rule, Smith et al. (2001) apply STWAVE on meshes not
more than five kilometers offshore (the direction from which the waves are arriving).
This will be referred to as assumption #1.

General approach
The SWAN code was developed at the Delft University of Technology and is continually
being upgraded. Consequently, the basic guideline followed here was to make as few as
possible changes to the SWAN code itself. In that way, new releases would require only
small modifications to run in parallel using the quasi time-accurate approach. In the MPI
quasi time-accurate approach developed in this study, all the MPI calls are contained in
the master program, which calls the SWAN program. The use of the MPI system to
manage the data and launch the computations is a very simple and attractive choice (a
single job with many processes). Rather than use the MPI system, one could write script
files to submit the different data as different jobs. For example, instead of submitting one

 3

job using 72 processors, one submits 72 different jobs requiring one processor and
devises a logic script that would tell the user when all the different jobs have been
completed. The MPI approach seems simpler and more attractive.

Modifications to the SWAN source code
The program module SWAN was changed to a subroutine which is called by a front end
interface program that reads the user’s INPUT file and creates the files needed by the
individual processes. The changes to the SWAN code consisted of adding common
statements that pass the process ID and the number of processes to SWAN subroutines
reading or writing files. The process ID and number of processes are used to control print
statements and to identify the input, output, boundary spectra, and wind files for each
process.

Changes to the SWAN input file
Modifications to the SWAN input file are given in Figure 1, which illustrates the
simplicity of the MPI implementation. Figure 1 shows the base INPUT file, that is, the
input file from which all the other process files are created. The only change for MPI runs
is the addition of “DATE_” before any file read or written on the different processors.
For brevity, only nine COMPUTE statements are shown. A more general method is
possible that avoids having to add the “DATE_” prefix.

PROJ ’MPI_SWAN input file’ ’100’
SET CART
MODE NONSTATIONARY TWODIMENSIONAL
GEN3 JANS
FRIC JON
QUAD
OFF BREAKING
COORD SPHERICAL
CGRID REGULAR 284. 35. 0. 2.0 2.0 96 96 CIRCLE 24 0.04 1.0 24
 INPGRID BOTTOM REGULAR 284. 35. 0. 192 192 0.010416667 0.010416667
 READINP BOTTOM 1. ’./DATE_sub2b_SWN_192x192.dep’ 2 FREE
$
 INPGRID WIND REGULAR 277.5 10.0000 0. 135 120 0.5 0.5 &
 NONSTAT 9508290000 1.0 HR 9509130000
 READINP WIND 1.0 SERIES ’DATE_swan_wind.inp’ 2 FREE
$
 BOUNDNEST2 WAMNEST ’DATE_LUISsub2_cdate_sp.fbi’ UNFORMATTED WKSTAT 284. 35.0
$
 INITIAL DEFAULT
$
$************ OUTPUT REQUESTS *************************
POINTS ’44014’ FILE ’DATE_44014_sub2_spherical.pts’
POINTS ’chlv2’ FILE ’DATE_chlv2_sub2_spherical.pts’
POINTS ’dsln7’ FILE ’DATE_dsln7_sub2_spherical.pts’
POINTS ’wr630’ FILE ’DATE_wr630_sub2_spherical.pts’
POINTS ’frf8m’ FILE ’DATE_frf8m_sub2_spherical.pts’
$
SPECOUT ’44014’ SPEC2D ’DATE_b44014.sp2’ OUTPUT 9508290000 1. HR
SPECOUT ’chlv2’ SPEC2D ’DATE_CHLV2.sp2’ OUTPUT 9508290000 1. HR
SPECOUT ’dsln7’ SPEC2D ’DATE_DSLN7.sp2’ OUTPUT 9508290000 1. HR
SPECOUT ’wr630’ SPEC2D ’DATE_WR630.sp2’ OUTPUT 9508290000 1. HR
SPECOUT ’frf8m’ SPEC2D ’DATE_frf8m.sp2’ OUTPUT 9508290000 1. HR
$
 TABLE ’COMPGRID’ ’DATE_sub2.tec’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR
 TABLE ’44014’ ’DATE_b44014.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR
 TABLE ’chlv2’ ’DATE_CHVL2.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR
 TABLE ’dsln7’ ’DATE_DSLN7.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR
 TABLE ’wr630’ ’DATE_WR630.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR
 TABLE ’frf8m’ ’DATE_frf8m.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR

 4

OUTPUT QUANT PER power=0
$
NUM ACC STAT mxitst=5
COMPUTE STAT 9509080100
COMPUTE STAT 9509080200
COMPUTE STAT 9509080300
COMPUTE STAT 9509080400
COMPUTE STAT 9509080500
COMPUTE STAT 9509080600
COMPUTE STAT 9509080700
COMPUTE STAT 9509080800
COMPUTE STAT 9509080900
STOP

Figure 1: SWAN input file used for the parallel computations

Data files
The test case was a simulation of 1995 Hurricane Luis used by Wornom et al. (2000). In
that study, the time-accurate version of SWAN was used with the output requested every
hour. The wind fields consisted of separate files for each hour; thus no changes were
necessary for the MPI quasi time-accurate runs. The boundary spectra came from a
WAM computation on a larger regional grid and had been written 12 hours/file. To avoid
possible file contention in sense #1, that is, different processes attempting to open the
same file, the boundary spectra were rewritten to one file/hour (the output times were
hourly). Each process input file contains the names of the files needed for that process;
thus file contention in sense #1 is avoided. Each process writes its output file, which
appears in the directory from which the program is run.

MASTER program
The major implementation effort was in creating a MASTER program to prepare the
input files for each of the processes. The MASTER program calls the SWAN code. All
the MPI implementation is contained in the MASTER program. Tasks consist of
identifying keywords in the generic SWAN input file such as “ DATE_” , “ wind” , and
“ OUTPUT” . Other key words are highlighted in bold letters in Figure 1. The MASTER
reads the generic input file twice, the first time to determine the number of data sets to be
computed and the second to write the input files for each process (the number of
requested output times divided by the number of processes determines the number of data
per process).

Load balancing
Since each process has different input/output data, file contention in sense #1 was
avoided. The size of the data is the same for each process. However, the boundary spectra
and wind fields are different for each process, and the number of iterations to achieve
convergence to the wave action transport equation may vary from data set to data set and,
therefore, from process to process. The convergences for process 34 and process 1 using
72 processes are shown in Figures 2-3. Note that process 34 required 15 iterations to
achieve convergence and process 1, four iterations. Note also that the level of
convergence for process 34 is 96.60 percent after four iterations, whereas the
convergence requirement is 98 percent, which requires 11 additional iterations. The
developers of the SWAN code recognized this type of convergence behavior and
included a parameter to limit the maximum number of iterations. Figure 4 compares a

 5

maximum for five iterations computation with unlimited number of iterations; the effect
on the solution is negligible.

myid = 34 accuracy OK in 1.74 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 72.94 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 93.53 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 96.60 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 93.16 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 94.77 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 96.32 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 96.47 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 96.47 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 96.57 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 97.31 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 97.25 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 97.85 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 97.73 % of wet grid points (98.00 % required)
myid = 34 accuracy OK in 98.02 % of wet grid points (98.00 % required)

Figure 2: Process 34/72: max iterations = unlimited

myid = 1 accuracy OK in 0.57 % of wet grid points (98.00 % required)
myid = 1 accuracy OK in 12.22 % of wet grid points (98.00 % required)
myid = 1 accuracy OK in 69.10 % of wet grid points (98.00 % required)
myid = 1 accuracy OK in 98.08 % of wet grid points (98.00 % required)

Figure 3: Process 1/72: max iteration = unlimited

 6

Figure 4: The effect of the number of iterations on the results

MPI speedup and efficiency results
The speedup and efficiency using up to 72 processes are shown in Figures 5-6. The times
include only the SWAN executions. Figure 5 shows very good scalability up to 24
processes when the maximum iterations were limited to five. Also shown is the speedup
when unlimited iterations were used. Figure 6 shows the MPI efficiency where it can be
seen that the load balancing using a maximum of five iterations significantly improves
the efficiency.

 7

Figure 5: Speedup using 72 processes

Figure 6: Efficiency using 72 processes

Figure 7 shows the time/process using unlimited iterations and a maximum of five
iterations. The time/process would be constant for ideal load balancing. While Figure 7

 8

shows improved load balancing using a maximum of five iterations, it is still not ideal
and may be the reason why the efficiency falls less than 90 percent when more than 36
processes are used. Additional load balancing could be achieved by assigning data sets to
a process file in such a manner that the data sets requiring the most iterations are not
assigned to the same processor, which can occur when they are assigned contiguously as
was done in this study.

A second plausible reason for the loss in efficiency when a large number of processes are
used may be file contention in sense #2. This occurs because of the limited number of
pipes to the disks where the data are located and output written. Thus as the number of
processes increases, file contention in sense #2 may result as all the processes are
competing for the same read and write resources. The use of MPI-IO will be explored in
future studies as a means to improve the input/output performance.

Figure 7: Time/process with max iterations = unlimited

Time-accurate vs. quasi time-accurate comparisons
The test case of Wornom et al. (2000) for a simulation of 1995 Hurricane Luis is used to
compare the quasi time-accurate and the time-accurate approaches. That study employed
the time-accurate version of SWAN. The sub2 nest computation from that study, which
used a 96-by-96 mesh with 25 frequencies and 24 angles, is examined with both
approaches. The time integration step for the time-accurate computations was 12 minutes.
Both the first-order time-accurate scheme and the second-order time-accurate scheme
were used with only the second order reported. The boundary spectra were created by
WAM run on a larger regional mesh. Computations were made with and without depth-
induced wave breaking.

 9

This test case would not fall under assumption #1 as the domain spans approximately 131
by 131 kilometers and the wind conditions are changing quickly, particularly for the
period of 9-12 September 1995. Thus, this is an interesting test case to evaluate this
approach.

Figures 8-11 show comparisons between the time-accurate computation and quasi time-
accurate computation at five test locations. These are NOAA buoy 44014, NOAA Station
chlv2, NOAA Station dsln7, the U.S. Army Field Research Facility (FRF) buoy wr630,
and the FRF 8-meter array at Duck, NC, for the 10-day period from 3-12 September
1995. NOAA buoy 44014 is the most seaward test site; the FRF 8-m array is the most
landward site situated 900 meters offshore. The results for the FRF 8-m array included
quadruplet wave-wave interaction (Q) and depth-induced wave breaking (B). The region
is 2-by-2 degrees off the North Carolina coast at Duck.

The differences between the quasi time-accurate approach and the time-accurate
approach are much smaller than the differences between the two approaches and the data.
Table 1 shows the L2 norms for both approaches. The L2 norms are very close, with the
quasi time-accurate approach being slightly more accurate at three of the test sites. The
norms covered the period from 3-9 September the study of Wornom et al. (2001).

Table 1: L2 norms comparisons
Data site Time-accurate Quasi time-accurate

NOAA buoy 44014 0.634 0.586
NOAA station chlv2 0.156 0.175
NOAA station dsln7 0.554 0.573

FRF buoy 630 0.274 0.241
FRF 8-m array 0.146 0.136

Table 2 shows the wall clock times for a 3-day simulation with output requested at each
hour using the time-accurate and the quasi time-accurate approach. The wall clock times
for a 10-day simulation are given in Table 3. The time-accurate computation was
initialized with a stationary solution at the initial output point. This additional CPU time
is included in Tables 2-3.

Table 2: Wall clock time for 3-day simulation
processors Time scheme Wall clock time
1 2nd order time-accurate 4.58 hrs
1 1st order time-accurate 3.88 hrs
1 2nd order quasi time-accurate 3.34 hrs
12 2nd order quasi time-accurate 17.74 min
24 2nd order quasi time-accurate 8.68 min
36 2nd order quasi time-accurate 6.24 min
72 2nd order quasi time-accurate 3.36 min

 10

Table 3: Wall clock time for 10-day simulation
processors Time scheme Wall clock time
1 2nd order time-accurate 15.27 hrs
1 1st order time-accurate 12.93 hrs
80 2nd order quasi time-accurate 9.90 min
120 2nd order quasi time-accurate 5.72 min

Figure 8: Time-accurate vs. quasi time-accurate: NOAA buoy 44014

 11

Figure 9: Time-accurate vs. quasi time-accurate: NOAA station chlv2

Figure 10: Time-accurate vs. quasi time-accurate: FRF buoy wr630

 12

Figure 11: Time-accurate vs. quasi time-accurate: FRF 8-m array

Resources
The present implementation creates input files, named INPUT, and output files, named
PRINT, on each process. A copy of the bathymetry field is also sent to each processor.
The availability of processes determines the throughput time. The ERDC MSRC O3K
with 512 processors is well suited for the present MPI program.

 13

Conclusions
This study introduces a quasi time-accurate approach in which the time dependency
enters the computation through the time-varying boundary spectra and wind fields; the
wave action transport equation is solved as a stationary problem at each requested time.
Each individual stationary integration can be regarded as disjointed so that coarse-grain
parallelism may be exploited. The MPI system is used to pass the data to the parallel
processes. For the 3-day, 72-hour nonstationary test case, results were obtained in 3.31
minutes using 72 processes. The same quasi time-accurate test case using one processor
required 3.34 hours, thus a speedup of 59.6. The advantages of the quasi time-accurate
approach are as follows:

1. Efficient MPI parallelization.
2. Equivalent accuracy with the time-accurate scheme with wall clock times

reduced from hours to minutes. As such, the efficient MPI quasi time-accurate
approach may be preferred to the time-accurate scheme for many DoD
applications.

3. The MPI efficiency permits routine computations with the SWAN code,
which are not presently practical with the time-accurate version because of
long CPU times (4b-c).

4. The MPI version can be used in several modes:
a. Faster turnaround times for the same cases
b. Finer mesh resolution
c. More frequencies and/or directional angles

5. The implementation of the MPI quasi time-accurate approach requires very
little changes to the SWAN code itself; thus new releases of the SWAN code
are easily incorporated.

6. The MPI quasi time-accurate approach was relatively easy to implement. The
major changes were made over a 3-day period with a week for refinement and
application to the test case.

7. The efficient MPI quasi time-accurate approach has merits and provides rapid
results until a parallel time-accurate version of SWAN becomes available.

Acknowledgments
This work was supported in part by a grant of computer time from the DoD High
Performance Computing Modernization Program at the ERDC MSRC in Vicksburg, MS.
The author would like to thank Dr. Robert Jensen of the Coastal and Hydraulics
Laboratory at ERDC for suggesting and supporting the various SWAN Programming and
Environment and Training studies. The author would also like to acknowledge fruitful
discussion with Dr. Richard Hanson of Rice University, Dr. Richard Weed and Dr.
Nathan Prewitt of Mississippi State University, and Dr. Dan Duffy of the Computer
Sciences Corporation Computational Science and Engineering group. Many discussions
with Erick Rogers concerning the SWAN code are also gratefully acknowledged.

 14

References
Booij, N., Ris, R.C., and Holthuijsen, L.H., (1999),
“ A third-generation wave model for coastal regions, Part I, Model description and
validation,”
J. Geoph. Research 104, C4, pp. 7649-7666.

Holthuijsen, L.H., Booij, N., Ris, R.C., Haagsma, J.G., Kieftenburg,
A.T.M.M., and Padilla-Hernandes, R., (1999),
“ SWAN version 40.11 USER MANUAL.”

Ris, R.C., Booij, N., and Holthuijsen, L.H., (1999),
“ A third-generation wave model for coastal regions,
Part II, Verification,” J. Geoph. Research 104 C4, pp. 7667-7681.

On Coupling the SWAN and WAM Wave Models for Accurate Nearshore Wave
Predictions Stephen F. Wornom, David J.S. Welsh, Keith W. Bedford
Coastal Engineering Journal, Vol. 43 No. 3, September 2001.

STWAVE: Steady-State Spectral Wave Model Users’ Manual for STWAVE, Version 3.0
Jane McKee Smith, Ann R. Sherlock, and Don Resio
U.S. Army Corps of Engineers
Engineer Research and Development Center
Coastal and Hydraulics Laboratory Report ERDC/CHL SR-01-1.

